Kainic acid-induced neuronal degeneration in hippocampal pyramidal neurons is driven by both intrinsic and extrinsic factors: analysis of FVB/N↔C57BL/6 chimeras.
نویسندگان
چکیده
The excitotoxic effects of kainic acid (KA) in the mouse hippocampus is strain dependent. Following KA administration, the large majority of hippocampal pyramidal cells die in the FVB/N (FVB) mouse, while the pyramidal cells of the C57BL/6 (B6) strain are largely spared. We generated aggregation chimeras between the sensitive FVB and the resistant B6 strains to investigate whether intrinsic or extrinsic features of a neuron confer cell vulnerability or resistance to KA. The constitutive expression of transgenic green fluorescence protein (GFP) or β-galactosidase expressed from the ROSA26 locus was used to mark cells in FVB or B6 mice, respectively. These makers enable the identification of cells from each parental genotype while TUNEL (terminal deoxynucleotidyl transferase-mediated biotinylated dUTP nick end labeling)-staining labeled dying cells. The analysis of the percentage of dying cells in FVB-GFP ↔ B6-ROSA chimeras yielded an intriguing mix of both intrinsic and extrinsic factors in the readout of cell phenotype. Thus, normally resistant B6-ROSA pyramidal neurons demonstrated an increasing sensitivity to KA, in a linear fashion, when the percentage of FVB-GFP cells was increased, either across chimeras or in different regions of the same chimera. However, the death of B6-ROSA pyramidal cells never exceeded ∼70% of the total amount of B6 neurons regardless of the amount of FVB cells in the chimeric hippocampus. In a similar manner, FVB-GFP cells show lower amounts of cell death in chimeras that are colonized by B6-ROSA cells, but again, are never fully rescued. These data indicate that both intrinsic and extrinsic factors modulate the sensitivity of hippocampal pyramidal cells to kainic acid.
منابع مشابه
Change of Nurr1 expression in mouse hippocampal CA3 region following excitotoxic neuronal damage
Objective(s): Nuclear receptor-related protein 1 (Nurr1), one of immediate-early genes, is a member of orphan nuclear receptor family. The aim of this study was to investigate the time-dependent change of Nurr1 protein expression in the mouse hippocampal CA3 region following kainic acid (KA)-induced excitotoxic neuronal damage.Materials and Methods:</...
متن کاملEffects of resveratrol on intrinsic neuronal properties of CA1 pyramidal neurons in rat hippocampal slices
Introduction: Resveratrol (3,5,4-trihydroxystilbene) a non-flavonoid polyphenol found in some plants like grapes, peanuts and pomegranates, possesses a wide range of biological effects. Evidence indicates that resveratrol has beneficial effects on nervous system to induce neuroprotection. However, the cellular mechanisms of the effects are not fully determined. In the present study, the cellula...
متن کاملTime course of dysregulation of calcium homeostasis in acutely isolated CA1 hippocampal pyramidal neurons after pilocarpine-induced Status Epilepticus
Glutamate induces excitotoxic damage to hippocampal pyramidal neurons in Status Epilepticus (SE) and epilepsy. In this study, we investigated time course of dysregulation of calcium homeostasis at various intervals after an episode of SE in acutely isolated CA1hippocampal pyramidal. For this purpose, male Sprague-Dawley rats (200 g) were subjected to pilocarpine-induced SE. The SE was blocked a...
متن کاملCharacterization of spontaneous network-driven synaptic activity in rat hippocampal slice cultures
A particular characteristic of the neonatal hippocampus is the presence of spontaneous network-driven oscillatory events, the so-called giant depolarizing potentials (GDPs). GDPs depend on the interplay between GABA and glutamate. Early in development, GABA, acting on GABAA receptors, depolarizes neuronal membranes via a Cl- efflux. Glutamate, via AMPA receptors, generates a positive feedback n...
متن کاملCharacterization of spontaneous network-driven synaptic activity in rat hippocampal slice cultures
A particular characteristic of the neonatal hippocampus is the presence of spontaneous network-driven oscillatory events, the so-called giant depolarizing potentials (GDPs). GDPs depend on the interplay between GABA and glutamate. Early in development, GABA, acting on GABAA receptors, depolarizes neuronal membranes via a Cl- efflux. Glutamate, via AMPA receptors, generates a positive feedback n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 32 35 شماره
صفحات -
تاریخ انتشار 2012